Curvas cíclicas

Son curvas planas, generadas por un punto perteneciente a una circunferencia que rueda (sin resbalar) sobre otra circunferencia o una recta. Se denominan cíclicas porque se repite su trazado.

Trazado de la cicloide.

La cicloide es una curva plana, lugar geométrico de las posiciones de un punto P perteneciente a una circunferencia O que rueda (sin resbalar) sobre una recta dada. La recta recibe el nombre de directriz y la circunferencia de generatriz o ruleta.

Dada la circunferencia de centro O y la recta r, para trazar la cicloide dibujaremos la circunferencia tangente en P a la recta y a partir de él rectificaremos sobre r la circunferencia. Dividimos la circunferencia y su rectificación en un mismo número de partes iguales, doce en la ilustración, trazando normales y paralelas a la directriz por las divisiones de la recta y circunferencia respectivamente.

En las intersecciones de las perpendiculares a r y la paralela que pasa por O están las posiciones del centro de la circunferencia O, que gira sobre r, cuando los radios de las divisiones de la generatriz coinciden con sus correspondientes divisiones en la directriz, O1, O2, O3… Con centro en O1 y el radio de la circunferencia generatriz en todo caso, trazamos un arco hasta cortar en P1 a la paralela que pasa por 1, con centro en O2 obtenemos P2 en la paralela que pasa por 2 y así sucesivamente. Los puntos así obtenidos se unen a mano alzada o con plantilla de curvas quedando de este modo trazada la curva.

Trazado de la cicloide
Trazado de la cicloide

Trazado de la epicicloide.

La epicicloide es una curva plana, lugar geométrico de las posiciones de un punto P perteneciente a una circunferencia O’, generatriz, que rueda exteriormente sobre otra O o directriz. Dibujamos las dos circunferencias tangentes entre sí y para su trazado se procede de igual forma que en el ejercicio anterior pero trazando circunferencias concéntricas en lugar de rectas paralelas a la directriz y calculando la rectificación inversa de la longitud de la circunferencia generatriz sobre la circunferencia directriz.

Trazado de la epicicloide y de la de la hipocicloide.
Trazado de la epicicloide y de la de la hipocicloide.

Trazado de la hipocicloide.

La hipocicloide es una curva plana, lugar geométrico de las posiciones de un punto P perteneciente a una circunferencia O’, o generatriz, que gira interiormente sobre otra O, o directriz. Trazamos la circunferencia directriz tangente interior a la generatriz dada y para su trazado procedemos de idéntica forma que en el ejercicio precedente.

Hipocicloide rectilínea.

Cuando el diámetro de la generatriz es igual al radio de la directriz, la hipocicloide resultante es un segmento igual al diámetro de la directriz que contiene al punto de tangencia entre las dos circunferencias.

Hipocicloide triangular.

Se produce esta curva cuando el diámetro de la generatriz mide un tercio del diámetro de la directriz.

Hipocicloide cuadrangular

Se produce esta curva de cuatro lazos cuando el diámetro de la generatriz mide la cuarta parte del diámetro de la directriz. Se denomina Astroide.

Hipocicloide rectilínea, triangular y cuadrangular.
Hipocicloide rectilínea, triangular y cuadrangular.

Trazado de la pericicloide.

La Pericicloide es una curva plana, lugar geométrico de las posiciones de un punto P perteneciente a una circunferencia O’ o generatriz que rueda sin resbalar sobre otra fija O de radio menor o directriz, siendo ambas tangentes entre sí. Para su trazado, dibujamos ambas circunferencias tangentes en P y dividimos la directriz en cualquier número de partes iguales, 1, 2, 3.. ocho en el ejemplo y trasladamos las longitudes de estas divisiones sobre la generatriz (rectificación inversa) igual número de veces, 1’, 2’, 3’….

Trazado de la pericicloide
Trazado de la pericicloide

Trazamos una circunferencia de radio O-O’ y prolongamos en sentido contrario los radios correspondientes a las divisiones 1, 2, 3.. hasta cortar en A, B, C a esta circunferencia. Con centro en A y radio A1 trazamos un arco que corta en P1, punto de la curva a otro trazado con centro en O y radio O1’. Con centro en B, radio B2 y centro en O y radio O2’ obtenemos P2 y así sucesivamente. Los puntos se unen a mano alzada.

Contenido relacionado

Óvalo, ovoide y espirales

Se denominan curvas técnicas a una serie de curvas de gran utilidad en carreras técnicas (Arquitectura e Ingeniería) y que están formadas por arcos de circunferencias tangentes unidos entre sí. 

Curvas técnicas. Hélices

Hélice es la curva descrita por un punto que se desplaza por la generatriz de una superficie de revolución a la vez que esta gira en torno al eje de

Curvas trigonométricas

Son curvas planas y abiertas, representación gráfica de las funciones seno, coseno y tangente. Construcción de curvas trigonométricas. Construcción de la Senoide o Sinusoide. Curva gráfica del seno. Dividimos la

Recursos o ejercicios para este tema

Aún no hay recursos externos publicados en esta sección
5/5
Técnica: Software
Dirigido a fotógrafos, diseñadores, ilustradores, concept artists, artistas de la industria del cine, los videojuegos o la publicidad y cualquier creativo que esté buscando desarrollar nuevas habilidades de retoque digital con Photoshop.
5/5
Técnica: Software
Dirigido a profesionales de la arquitectura, estudiantes, artistas y a cualquier persona interesada en crear visualizaciones arquitectónicas. Crearás un modelo detallado de una casa vacacional.
5/5
Técnica: Software
Aprenderás a planificar y gestionar tu proyecto de Lumion para que sea mucho más cómodo de editar y, además, sentar las bases de una buena colaboración: tanto con otras personas, como contigo mismo para compartir información en proyectos posteriores.
5/5
Técnica: Software
Pack de cursos muy recomendados para introducirte en 3DsMax y Corona Renderer desde cero. Explicaciones muy claras y contenido de las sesiones muy interesante. Resulta muy fácil seguir las indicaciones.
5/5
Técnica: Software
Un pack de 7 cursos donde aprenderás a manejar todas las herramientas, tips y atajos necesarios para realizar un trabajo profesional. Los recursos del curso y páginas recomendadas para conseguir referencias para artistas son muy útiles.
5/5
Técnica: Software
Al finalizar este Domestika Basics de AutoCAD, habrás aprendido todo lo necesario para crear tus proyectos arquitectónicos como un profesional.
5/5
Técnica: Software
Dirigido a arquitectos, ingenieros y cualquier persona que quiera empezar a modelar espacios en 3D y dar sus primeros pasos en el software líder de la metodología BIM, Revit. Al finalizar habrás creado un proyecto de vivienda completo, con todas las fases de diseño y modelación en Revit.
5/5
Técnica: Software
Dirigido a ilustradores, diseñadores y cualquier persona interesada en el concept art, especialmente aplicado a videojuegos AAA. Aprenderás a realizar un escenario concept art con acabado profesional para un videojuego AAA a partir de un briefing real.
5/5
Técnica: Software
En este pack de 8 cursos aprenderás a manejar Revit desde cero para desarrollar tus propios proyectos arquitectónicos. Descubrirás las herramientas para crear muros, suelos, cubiertas y estructuras, además de planos y presentaciones realistas.
5/5
Técnica: Software
Dirigido a arquitectos, diseñadores, fotógrafos, animadores y creativos en general con un nivel básico de 3D e interesados en la Arquitectura, la Fotografía y el Interiorismo. Al final del curso elaborarás una imagen del interior de una vivienda unifamiliar situada en un bosque.

Subscríbete​

No te pierdas las nuevas actualizaciones en tu correo electrónico​

Subscríbete​

No te pierdas las nuevas actualizaciones en tu correo electrónico​