Tangencias

Los diez problemas de Apolonio

Los diez problemas de Apolonio desde perspectivas gráfica y analítica

El problema de Apolonio y que tiene este enunciado: Dados tres objetos tales que cada uno de ellos puede ser un punto, una recta o una circunferencia, dibujar una circunferencia que sea tangente a cada uno de los tres elementos dados. Este artículo es fruto de una colaboración entre dos áreas curriculares, Plástica y Matemáticas, que comparten un amplio campo de contenidos curriculares, y en él se resuelven los diez problemas de tangencias de Apolonio.

Aplicación de las tangencias. Enlaces

Resolución de los diferentes tipos de enlaces que nos podemos encontrar. Casos más habituales, ejercicios de ejemplo y selección de los mejores vídeos y láminas.

Circunferencias tangentes a rectas

Circunferencias tangentes a rectas

El problema de Apolonio consiste en construir una o más circunferencias tangentes a tres objetos dados, que pueden ser circunferencias, puntos o rectas. Esto proporciona hasta diez tipos distintos de problemas de Apolonio, correspondientes a cada combinación de circunferencias. En este tema veremos los de una recta y dos puntos (PPR), dos rectas y un punto (RRP) y una circunferencia y dos rectas (CRR)

Circunferencias tangentes

Circunferencias tangentes a rectas y circunferencias

Mediante los axiomas básicos: el punto de tangencia entre dos circunferencias está alineado con sus centros, el radio de la circunferencia que contiene al punto de tangencia es siempre perpendicular a la recta tangente y el centro de una circunferencia tangente a dos rectas concurrentes está ubicado en la bisectriz de estas, resolvemos diversos ejercicios de circunferencias tangentes a rectas y circunferencias.

Imagen destacada tangentes 1

Rectas tangentes a circunferencias

Tangentes a una circunferencia desde un punto exterior, por un punto y paralelas a una dirección. Tangentes comunes a dos circunferencias de distinto radio.

Subscríbete​

No te pierdas las nuevas actualizaciones en tu correo electrónico​